

Council Chatbots
Technology
Landscape Review

1. Introduction
The Technology Landscape Review aims to assess and summarise the leading

conversational Artificial Intelligence platforms, to share information regarding

their advantages and disadvantages, and to provide advice to any potential

council, or group of councils, wanting to investigate how to implement chatbot

technology.

This document is one of a group of reports resulting from the discovery research

project “Can chatbots and AI help solve service design problems?”, in

collaboration with 13 English councils.

All key project deliverables outline our findings in detail - please refer to our

individual reports for more focused insights and information:

● ROI Analysis and Market Summary | April 2019 | Council Chatbots |

Torchbox

● Example Shared Conversational AI Architecture | April 2019 | Council

Chatbots | Torchbox

● User Research Summary Report | April 2019 | Council Chatbots |

Torchbox

● Case Studies | April 2019 | Council Chatbots | Torchbox

● Project Summary Report | April 2019 | Council Chatbots | Torchbox

A blog has been published by the project lead, Neil Lawrence of Oxford City

Council. To read articles covering each stage of the project please visit the blog:

● https://localdigitalchatbots.github.io

Technology Landscape Review | April 2019 | Torchbox

1

https://localdigitalchatbots.github.io/

2. Executive summary
Systems based on Artificial Intelligence Markup Language (AIML) require a

great deal of explicit configuration in a technical language. Intent- and

entity-based systems that use machine learning are the first step towards

conversational Artificial Intelligence (AI) having a basic understanding of

natural language, which is needed before we start to try and train a system to

interact with an organisation’s users. Conversational AI is essential to what is

often called ‘chatbot technology’, where a user interacts with a chatbot (the user

interface connected to a conversational AI system) from a website or app in

order to gain answers, complete an action or access a service.

Natural Language Understanding (NLU) in machines is still basic but obviously

necessary for a system interacting with users in a conversational manner. As a

result, it is necessary to limit the domain that the user-facing chatbot and its

underlying system is trying to address, in order to achieve a good user outcome.

To help a user understand what this domain is, we must be explicit about the

purpose of any chatbot offered to the user.

We must also carefully select use-cases where the information and backend

infrastructure sending to and receiving data from the conversational AI system

are sufficient to create a satisfactory outcome for the user. For these reasons,

use-case selection and user research is extremely important in creating a data

model for the system to use.

This technology is not new; what is new, and is both driving and enabling the

move towards conversational AI, is the following:

● the availability of large amounts of cloud hardware to run it cheaply

● increased user contact across multiple channels

● the open source online data available to train these technologies

Technology Landscape Review | April 2019 | Torchbox

2

● most personal communication now being conducted in messaging and

social media channels, within which chatbots have better chances to

reach near-human conversation parity compared to everyday life

All the major cloud and open source providers have adopted a very similar set of

technologies for their conversational AI platforms, meaning they can all be

trained from a very similar data model.

The best NLU performance among the conversational AI systems analysed for

this report were IBM Watson and Rasa; however, the major platforms are

closely keeping step with each other, and differences in features between the

best platforms are small. Important considerations where differences lie are in

the ability to generate answers from written documentation without explicit

configuration effort for each scenario (long-tail solutions), and concerning

conversation configuration; whether the platform uses deterministic rule-based

configurations, or a machine-learnt, probabilistic and story-based configuration.

The major platform styles of use and configuration are attractive to different

types of users. For instance, business users may prefer IBM, many developers

show a preference for Microsoft, while data scientists may be more inclined

towards Rasa. This may be a major factor in selecting a combined council

platform, depending on how the system is intended to be developed and

maintained.

The assessed platforms also offer cloud technology, which enables the

cost-per-serve to be low, typically ranging from £0.01 to £0.10. Where they fall 1

in this range is largely dependant on the complexity of domain, the level of cloud

isolation, together with any enterprise scale features required.

The software costs-per-serve are generally a small portion of the overall cost . 2

The costs of developing the initial model, the investment in ongoing

maintenance and training, and integrations to a wide variety of differing

1 The cost associated with a single contact or chat session
2 For further detail on the costs of chatbot information, please see the Return on Investment analysis

Technology Landscape Review | April 2019 | Torchbox

3

back-end systems across each council, are likely to represent the greatest

portion of project cost.

Collaborating as a group of councils will enable a centralised cloud system to

have greater degree of data isolation on the cloud platforms, lead to economies

of scale, and provide enterprise-class features.

The overall recommendation from this report for a conversational AI platform

would be

IBM Watson Assistant Plus or Premium for a public cloud hosted system

or Rasa Stack for an open source privately cloud hosted system

Technology Landscape Review | April 2019 | Torchbox

4

Contents
1. Introduction 2

2. Executive summary 3

3. Reviewing the history of machine-human interaction and technology 9

3.1. The challenge of natural language 9

3.2. Teaching the machine 13

4. Use case selection 25

4.1. Have a focused purpose 25

4.2. Be sure you can service the understood need to solve the user’s problem
26

4.3. Have a way of directing the user to more suitable help when the

system cannot assist 27

5. Current common limitations of NLU in conversational AI systems 28

5.1. Multiple or conditional utterances 28

5.2. Intentions with complex implicit hierarchies 29

5.3. The “long tail” of queries 32

6. Comparison of the accuracy of short tail conversational AI systems 34

6.1. Intent classification scores 35

6.2. Named entity recognition scores – 1 x 54 entity set 36

6.3. Named entity recognition scores – average across 8 sets of up

to 20 entities 36

7. The value of the data model for a business domain 38

8. Other important aspects to consider in a conversational AI platform 39

8.1. API and UIs 39

8.2. Context Object 39

8.3. Visual Conversation Flow Configuration 40

8.4. Conversation flow control 40

8.5. Pre-built channel integrations 41

Technology Landscape Review | April 2019 | Torchbox

5

8.6. Supported content types 42

8.7. Easy configuration of external web services and/or cloud

functions 42

8.8. Pre-Trained System Entities 43

8.9. Pre-Trained user Intentions 44

8.10. Cluster and recommend user intentions based on existing

chat logs 44

8.11. Analytics Dashboard 45

8.12. Advanced Analytics 45

9. Content Management 46

10. Costs 47

10.1. Charge types 47

10.2 Comparing charge types 48

10.3 Costs by platform 49

11. Feature matrix 52

12. High-level characterisation of each platform 53

12.1. Chatfuel 53

12.2. Botkit 53

12.3. LivePerson Maven 53

12.4. Amazon Lex 54

12.5. Microsoft Luis 54

12.6. Google Dialogflow 55

12.7. Rasa 55

12.8. IBM Watson 55

13. Recommendation 57

Technology Landscape Review | April 2019 | Torchbox

6

3. Reviewing the history of
machine-human interaction and
technology

3.1. The challenge of natural language

Ever since the first machines to automate tasks were created, we’ve grappled

with two problems: first, how to build them to complete the tasks we need done;

second, how to instruct them to do these tasks. Both are very complex, as the

number of things that could possibly be asked of a machine is enormous, and the

variety of ways someone could describe what they want is equally large.

Our attempts to make systems as intuitive and simple as possible for users has

been to simplify both sides of this problem:

1. To build a very clear understanding what the machine can do

Then, even if the process to accomplish that is very complex:

2. Provide a very simple way for the user to activate that process

3.1.1. Simple tactile interaction

Initially, systems were entirely mechanically connected; the turning of a crank

on a pump caused water to be raised from the well. A direct physical 3

connection existed between the process and the end result. These mental

connections of direct cause and effect are often our most comforting and

satisfying ways to interact with machines, and are ones we’ve replicated in our

electronic devices.

A toggle light switch is simple and satisfying, despite the myriad wires behind
4

the wall. We have an object which responds with a positive action and always

3 First depictions of piston pumps in Europe date back to c1450
4 The toggle light switch was invented in 1897

Technology Landscape Review | April 2019 | Torchbox

7

causes a light to spring into life faithfully and repeatedly. We place them in

predictable places in our houses; they are ubiquitous, and as such, rarely is

anyone disappointed by a light switch, save for the absence of one where they

expect one to be.

In the 1920s we moved from the age of wired electricity, telegraph and

telephone to the wireless radio. Suddenly our devices were not just talking

through physical wires, they were driven by signals coming from hundreds of

miles away through thin air. The ways this strange and new machine operated

needed familiar and tactile devices to control it. The dial, the slider, the buttons

came to be familiar controls. By pushing, turning and sliding, we could determine

what controlled a complex remote system. Those controls still form the basis for

a great deal of visual user interface (UI) design in computing today; the function

of a visual radio button is instantly familiar.

3.1.2. Voice-activated interaction

With machines enabling us to talk to humans via a radio or a telephone, it

prompts the question: why can’t we talk to the machine in the same way?

The challenge is that human speech is remarkably complex and imprecise. Far

from having just one function, the same word may have many functions

depending on how and where it is used, and by whom. Our first solutions to this

challenge came by trying to simplify the solution again - creating simple

commands with hopefully simple expectations for complex tasks.

The earliest attempts at voice-activated systems were made around the 1920s

with the advent of the wireless radio. “Radio Rex” was a wooden dog house
5

which, when a user said “Rex” loudly and clearly, would respond by having Rex

spring forward and bark.

5 How Radio Rex worked https://www.youtube.com/watch?v=AdUi_St-BdM

Technology Landscape Review | April 2019 | Torchbox

8

https://www.youtube.com/watch?v=AdUi_St-BdM

Radio Rex was a solution which simplified both sides of the control problem: it

had one function and understood just one word. Or rather, it understood a

noise: its “understanding” was limited to just recognising a reverberation at an

approximate frequency.

This codification of language into commands with only one meaning is how

we’ve tackled this problem in a variety of places where communication is limited

or difficult. In military fields a countdown changed from five, to fiver, to avoid

saying something that it is too similar to “Fire”.

3.1.3. From automated response to conversational AI

We’ve probably all had the experience of being asked to say a particular word to

an automated system on the phone. For instance, by asking us to say only “Yes”

to proceed or “No” to stop, we are reducing the complexity to the equivalent of a

verbal button. The system is created to assign a single possible meaning to the

user’s language depending on which word is said while the user is also restricted

by the options the system presents to them and so increases the chance of a

successful interaction.

Breaking out of an automated system to attempt conversational AI poses the

challenge that, in natural - human - language, words often do not have a single

meaning:

“May” can be modal verb, to express possibility, or ask permission, or

express a wish.

Or, “May” can be a noun: the hawthorn blossom, or the fifth month of the

year.

Or, “May” can be a proper noun, someone’s name.

If we are looking to build a chatbot using conversational AI technogloy for a

Doctor’s surgery, we might well come across the sentence:

Technology Landscape Review | April 2019 | Torchbox

9

“May I have an appointment with Dr May in the first week of May?”

Using natural language tends to open up both sides of the control problem; the

user’s expectations may be different from the functionality supported, and

whatever instruction the user gives might be highly ambiguous.

By encouraging a machine to interact more ‘naturally’ we have also raised user

expectations. We’re not asking the user to communicate in an unfamiliar

specific programming language or using complex set of buttons; instead we’re

trying to mimic in a small way the way a human converses, and that invites

comparison between real human conversation and the experience conversing

with the machine, not just how easy our product is to use compared to our

competitors.

We also use the way someone converses as a proxy for how they think. It is easy

to avoid making yourself look foolish with a button, but with natural language

we are inviting the user to subconsciously make a judgement not only on

whether this process works or not, but about how ‘smart’ the system was that

did it.

So, with these challenges, why attempt a conversational interface, a chatbot, at

all? The desire to talk to machines in this way has never diminished. Despite all

the advances in visual user experience, we see organisations and users

continuing to want to reach out to converse with each other using natural

language. Speaking is one of the most natural ways to instruct; it’s the way we

are taught to do from the earliest ages. As councils, if we can succeed in this

area we will be more trusted by the public, and will be perceived as smarter than

a button click could ever have been.

Technology Landscape Review | April 2019 | Torchbox

10

3.2. Teaching the machine

3.2.1. Keyword and synonym matching

In the 1960s, punch card programming, typewriters, and keyboards

transformed how humans were communicating with each other and with

machines. If we could now programme a computer by typing or using punch

code, why couldn’t it type back?

In 1966, Eliza was created as one of the first typed conversational systems that

managed to create responses that seemed closer to natural language. Eliza

replicated some of the aspects and questioning techniques of a client-centric

psychiatrist who tries to understand, empathise, and get the patient to expand

on their issue for themselves. This was once again designed to simplify both

sides of the control problem:

a) The stylistic language helped give the user a very stereotyped

expectation of what to expect from the conversation and

b) By reducing the sophistication of understanding and response required,

Eliza needed to understand little of what the user said: only enough to

combine what they said in a response to encourage the user to expand for

themselves.

To do this, Eliza used keyword matching. It reacted only to certain words in a

sentence and then used the parts of the sentence before or after that word

(which it didn’t understand or examine further) to play back to the user in the

response. An example from the code would be:

“Doctor, I dreamed of vampire cats”

“Really, of vampire cats?

Only the fact that the two keywords matched, and the order of them was

“dreamed” immediately following “I”, are of significance to the system. The

portion after dreamed is then played back in the answer.

Technology Landscape Review | April 2019 | Torchbox

11

Eliza’s concept of words was very limited. It understood that certain words are

synonyms of another word, and it understood simple patterns of where the

words occurred in sentences. Where it was configured with synonyms, it would

treat the presence of any of those synonyms in a certain place in a sentence as

meaning the same thing.

It was configured to understand that

dreamt = dreamed

It would have reacted exactly as before if the user had said:

“I dreamt of vampire cats”

“Really, of vampire cats?

This is synonym matching.

Eliza understood about 92 words, had around 36 different classes of reactions,

most with several variations, and had a little over 200 total possible responses

in all. But otherwise, its understanding of words was very limited and it had no

concept of a verb or a noun.

However, it proved that by making the purpose of the system clear and then

carefully crafting a set of responses, that even with very limited technology, a

persuasive system could be built. The total training script for Eliza is only about

400 lines long. 6

3.2.2. Artificial Intelligence Mark-up Language

Moving beyond simple keyword matching, systems capable of more realistic

interactions take a lot more training. This leads us to our next class of systems,

based on Artificial Intelligence Markup Language (AIML).

6 Eliza statistics are taken from Charles Hayden’s faithful Java recreation of the original training file
http://www.chayden.net/eliza/Eliza.html

Technology Landscape Review | April 2019 | Torchbox

12

http://www.chayden.net/eliza/Eliza.html

AIML was an attempt to extend the original Eliza system into a codified mark-up

language, and to then use this to train a much more sophisticated system: Alice.

AIML allowed for more sophisticated patterns and response variations. It

allowed Alice to better remember the user’s position in a conversation and what

they had said before. It provided programmers with better structures to

configure the synonyms and patterns they needed.

Systems built in AIML can be extremely effective; Alice won the Loebner prize

for the most human-like bot of the year three times in 2000, 2001 and 2004.
7

Fundamentally however Alice had no more understanding of the actual words

than Eliza did. It still relied on human configuration of every pattern of words it

could understand, and of every response that it could make. Given any specific

domain of responses, and enough time to adapt to the expectations and wording

of real users, a high-quality system can be created. Building such a system is a

huge task - the last available version of Alice has 286,764 lines of AIML code.
8

AIML is still used in award-winning systems. Mitsuku, which is based on an

evolution of AIML, with added reasoning about objects and concepts, has won

the Loebner prize four times, including most recently in 2018. Its writer, Steve

Worswick, has been working on the Mitsuku personality since around 2005.
9

The bots typically competing for the Loebner challenge are just trying to have

the most natural conversation they can. They are trying to match a natural

response to whatever you say and don’t have a direction or purpose that they

are trying to steer you towards. For instance, Mitsuku represents an

18-year-old girl from Leeds and will play games, or reason facts, or talk about

what she likes or dislikes.

Generally, in business we aren’t necessarily trying to have the most natural

discussion. We instead have goals as services or pieces of information we want

to steer the user towards. Business domains, backend integrations and views

7 https://en.wikipedia.org/wiki/Loebner_Prize
8 Alice v1.6 from the AIML Foundation https://github.com/fastcoding/aiml-en-us-foundation-alice.v1-6
9
https://aidreams.co.uk/forum/index.php?page=Steve_Worswick_Interview_-_Loebner_2013_winner#.X
K-Wr-hKiM8

Technology Landscape Review | April 2019 | Torchbox

13

https://en.wikipedia.org/wiki/Loebner_Prize
https://github.com/fastcoding/aiml-en-us-foundation-alice.v1-6
https://aidreams.co.uk/forum/index.php?page=Steve_Worswick_Interview_-_Loebner_2013_winner#.XK-Wr-hKiM8
https://aidreams.co.uk/forum/index.php?page=Steve_Worswick_Interview_-_Loebner_2013_winner#.XK-Wr-hKiM8

about how tasks should be completed tend to vary widely between

organisations. Creating systems for complex new business domains from AIML

faces a number of challenges: configuration of AIML is not very intuitive - it

feels much like the technical mark-up language it is, and the effort level to create

a system in a new domain of understanding is large.

With AIML, the control problem remains large on both sides of the equation: the

number of examples for how real users say things that we need to configure is

very high. Simultaneously, the number of things that a user could expect us to

say in a very open conversation is very high. The total configuration effort

therefore is very high.

3.2.3. Intent and Entity Machine Learnt systems

So, we come to what is currently the most popular class of typical cloud-based

systems. The need for such systems has again been driven and enabled by

changing the way we use technology.

Our personal communication has changed radically in the last 15 years: the

landscape has changed from most of our personal communication being done by

telephone calls, to a tiny fraction now being done so. Most of our interpersonal

communication is now done by SMS, messaging service or social media.

However, organisations have largely been left behind in the speed of this

change, busy adapting to a web-based economy while still being heavily reliant

on phone contact. Organisations now face catching up with the explosion of

messaging and social channels where users expect to talk to them.

At the same time our patience has diminished. The best digital customer

experiences now happen in seconds. Even physical deliveries happen the same

day we complete a transaction. We are no longer tolerant of the complexity of
10

the system fulfilling our needs. Our expectations of organisations have grown,

10 Amazon Prime Now offers same-day deliveries in a variety of locations in the UK on a subrange of
products

Technology Landscape Review | April 2019 | Torchbox

14

and we expect access not only on any channel, but near instantly on that

channel. Simultaneously, organisations face the challenge of reducing costs.

For many organisations the only way to address all three areas (namely, the

variety of channels, the desire for more rapid responses, and the associated

costs of these) is to automate some of these interactions. Organisations have

been increasingly looking to conversational AI to help serve that need. Using

conversational AI can help to provide instant responses to certain tasks across

multiple new channels, and to free up human time for those circumstances in

which a computer couldn’t reasonably be expected to replace human

conversation.

Social and technological changes also mean we have several new factors which

help us build these new types of systems.

We now have large volumes of well written, structured natural language on

almost every subject available online. Wikipedia is around 3 billion words in

English alone. We have an enormous, curated examples of how humans write

and speak.

Users are now conversing on messaging systems where a human is reduced to a

small avatar and a small passage of text. This is a simplified environment for

robots, within which it is much easier for a bot to attempt to be closer to humans

in behaviour.

Lastly, the cloud provides vast amounts of processing power to try and analyse

this data to learn how users refer to objects in the world and how they typically

express themselves.

The world’s largest cloud players, such as Amazon, Google, IBM, and Microsoft,

have all invested heavily in conversational AI platforms. They regard it as a

pivotal application with which to try to persuade organisations to decide to

move to cloud hosted systems, due to the difficulty of organisations building and

scaling these systems for themselves with private processing power.

Technology Landscape Review | April 2019 | Torchbox

15

Each of these big cloud players have developed systems that use NLU systems

to tackle the problem in similar ways. Rather than rely on human-configured
11

lists of synonyms or patterns, they have analysed these large repositories of

online information to build a more fundamental understanding of the language

upon which business users can train and configure new business systems.

By analysing every pair of words within these large corpuses, these systems can

understand that because the month of March and the month of December

appear in very similar places in sentences next to very similar words, that they

are a similar type of word. These systems can understand based on the words

preceding what word might typically come next. The same technology underlies

the auto-correction on your phone, by understanding which words typically

follow other words. Similarly, if given a sentence with a word removed, the

system can suggest words that might likely go in that space. So:

“I’ve cut my **** and I’m on my way to hospital”

The system might suggest, leg, hand, head or arm, and be able to rank these in

order of likelihood based on their understanding of analysing that very large

corpus of data.

These systems don’t understand words as we do; they have a limited grasp of

grammar and (generally) no external concept of the objects outside of the text.

However, they understand the similarity between words and some of the

differences in meaning of words when they appear in different parts of the

sentence or paired next to other words.

In this way they us address natural language by understanding (to some extent)

the difference between:

Is doctor May in the house?

and

11 Typically a Support-vector machine classifier for intent detection

Technology Landscape Review | April 2019 | Torchbox

16

May I have a biscuit?

and

I hear May is lovely in Portugal”

Before we even start to train and configure our system, it already has some

understanding of the fundamental language, and types of words within it, upon

which to build through training. Most of the systems have contributed to this

pre-built recognition of commonly needed entities, such as such as dates,

people, organisations, and other typical important parts of speech. Some will

also use these techniques to deal with different inflections of words, preventing

us from having to deal with different manual configurations of all the variations,

by using stemming or lemmatisation. In this way, such systems understand that

sing, sang and sung all belong to the same root verb.

With millions of examples of utterances available in the base language, these

systems are then able to ask us to provide far fewer utterances that a user might

use to express themselves in our specific business domain. Typically, these are

examples of what a user might say to express what their intention is in the

moment of the conversation, and within that utterance, to mark what the

significant entities are involved that they want to do that thing with.

So, for our imaginary doctor booking system, we might give examples of a user’s

intention to:

“Book an appointment”

I need to come and see Dr May urgently

Are there any appointments available today?

Can Mr Kamath look at my knee any time this week?

“Find opening times.”

Technology Landscape Review | April 2019 | Torchbox

17

When is the surgery open today?

On Saturdays what time do you close?

Can you give me your opening times please?

Where we’ve noted that

Today, week, and Saturday

are dates that the answers of both intentions need to be specific about,

Dr May, and Mr Kamath

are practitioners at the surgery that an appointment needs to be with.

Instead of asking us to configure a rigid pattern of words that a user’s utterance

must fit exactly to in AIML, any utterance a user says can be compared against

the base language model and the examples that we previously gave the system.

The system can then tell us which set of examples the utterance is most similar

to, even if the pattern of words is very different, or the actual words are

different from the ones in the example but are ones that the base language

model understands to be similar.

So, if our actual user comes in and says

“I must have an appointment on Monday”

The system will be able to say that, even though both intentions mention days in,

this intention is much more likely to be “booking an appointment” than “finding

opening times”.

This is intent classification.

The system will also know that even though Monday wasn’t configured in the

examples, that this is the date for the appointment and that the user has not

specified a particular doctor with whom to make an appointment.

Technology Landscape Review | April 2019 | Torchbox

18

This is “named entity recognition” (NER) or entity extraction.

These systems make all their decisions about what a user means through a

combination of these two objects, intents and entities, that are trained by

annotated example. Every user utterance must be understood by training these

two objects. Even simple confirmations or greeting intentions need to be given

domain specific examples to ensure they work with the other intentions within

the set.

Intention or intent training example

An intention or intent is something that a user intends to accomplish through a

specific utterance. This is evaluated by the overall combination of all the words

and the position of the words in an utterance against the different examples for

each intention in the training.

The closest matching intent will then be returned, together with a system

confidence level. Intentions are often given a leading # to mark them.

For example, a training set might be:

#Book_Appointment

“I want to see Dr Kamath on Tuesday”

“I need an appointment tomorrow”

“Can I book an appointment next week with the nurse for a blood

test.”

#Affirmative_Yes

“Yep”

“Yas”

“Affirmative”

#Emergency

Technology Landscape Review | April 2019 | Torchbox

19

“Help I need an ambulance”

“Emergency”

“Help me please I need a doctor”

A domain of knowledge is described by the total number of intentions within it

and the examples making up those intentions.

Modern systems require between 5-15 examples for each intention to have a

basic level of training. 30 example intentions is typical for initial alphas, with

100+ required for production launches, and maybe as many as 1000+ after

optimisation once in production.

Entities training example

Entities are things which a user intends to accomplish that action with or on.

These are evaluated by looking for particular words from a training set

(synonym based), or words that are like particular words in a training set and

used in similar positions (contextually trained).

These are often given a leading @ to mark them, and they are typically

annotated within the intention examples. So here marked in bold above are

examples of entities and their positions in user utterances for

@practitioner = “Dr Kamath”, “Nurse”

@date = “next week”, “Tuesday”

User utterance intent classification and extraction example

If a user said

“Are there any appointments with Dr Luke available a week Wednesday”

The system would compare this utterance to the domain training sets and its

base understanding of the natural language, and give the most likely intention

classification from the three intentions it understands in this domain, along with

Technology Landscape Review | April 2019 | Torchbox

20

any entities it is able to extract related to that intention. The most likely

classification for this utterance is

#Book_Appointment

With entities of

@date: “next Wednesday”

@practitioner:“Dr Luke”

In a rule-based system, a response can then be configured which does

something similar to

Condition:

If intention = #Book_Appointment

and @date is present

and @practioner is present

Action: Book appointment for @practitioner on @date

Say: “I’ve booked you in with @practitioner on @date”

Some systems have ways of reducing the configuration effort by prompting the

user for entities that are needed for a given intention, in case the user has not

mentioned them, or the system has not detected them. This is typically referred

to as “slot filling” - namely, identifying the necessary entities to complete a slot

necessary to perform and intended action.

Otherwise typical conversational AI systems require a condition to be matched

for every combination of intention, entity and conversational context that it is

wished for the system to address.

Technology Landscape Review | April 2019 | Torchbox

21

3.2.4. The benefits and limitations of intent and entity systems

Intent and entity systems greatly reduce the number of examples we need to

provide to adequately train the system and they have helped greatly with one

side of the control problem: understanding the user.

However, given a very open conversation, the number of things that users might

expect us to respond with is very high. The other side of the control problem is

largely unaddressed by these techniques: we still must build a satisfactory

response for the things that the user wants to achieve, and a reasonable

expectation of what those are in order to create a good user experience.

As a result, use case selection and user research are extremely important in this

field.

Technology Landscape Review | April 2019 | Torchbox

22

4. Use case selection
The current sophistication of conversational AI requires us to still select

carefully the cases we try and address. While modern intent and entity

classification systems help greatly with reducing the configuration level to

understand the user, generally they do little to reduce the effort in configuring

how to respond to the user. To create a satisfactory outcome, many answers

must be known by the system or complex actions performed across a wide

variety of backend systems. These answers are normally quite different

between organisations, and the systems that need actions taken on vary in use,

purpose and technology.

So, while modern intent and entity systems make it quicker to train the natural

language for a domain, the effort to configure the response to any user intention

is largely the same as for an AIML based system.

To improve the user interaction with any conversational AI system, a number of

tactics need to be employed.

4.1. Have a focused purpose

To reduce the total number of things a user can expect of the system to respond

to, we need to be very clear on what the system is meant to achieve. If the

system is clearly trying to address a specific area like “Recycling queries” or

“Road problem reporting”, and the chatbot is clearly positioned as such to the

end user, then the system can focus on a narrower set of possible utterances.

Working with narrower domains of knowledge produces a better

conversational model and fewer ambiguities of meaning. Furthermore, the

variety of off-topic or ancillary functions needing to be supported can be greatly

reduced, as we are more able to signpost the user back to the core functionality.

Technology Landscape Review | April 2019 | Torchbox

23

Narrowing the domain and clearly labelling the chatbot’s intended use, and what

it can be expected to do (or not do) is crucial for both a satisfactory user

experience and also ensuring we can build a system within a reasonable amount

of time and effort.

4.2. Be sure you can service the understood need to
solve the user’s problem

Within a limited domain each answer still needs to be satisfactory to the end

user. If a user wants to know opening times, then all that is required is a

configuration of the opening times in the system response. However, if the user

wants to book an appointment, the system will need access to the appointment

booking system and permission to make changes to provide the user with a

satisfactory outcome.

One way to consider the suitability of a task for conversational AI automation is

to try to think of what information and system a human user would need to

solve the problem. A conversational AI system knows only the documents it’s

given and the systems it’s connected to. It can’t turn around to ask a colleague,

it can’t use some wider experience beyond its training, and it’s not free to

speculate or guess. If a human user could only use the information within

certain set documents, and only specific systems, even if they understood the

user perfectly, could they deliver a positive result for the user?

If a human couldn’t solve the problem within those limitations, then the system

will not be able to either, and this use-case is almost certain to create a poor

user experience and should be avoided.

Technology Landscape Review | April 2019 | Torchbox

24

4.3. Have a way of directing the user to more suitable
help when the system cannot assist

Conversational AI systems typically rely very heavily on the information

contained in backend systems, and the typical processes demanded or

suggested by an organisation. In any domain there will be situations where the

standard process does not help the user, where the situation is more complex

than the organisation typically expects, or where the user has specific needs

that the system can’t address. In these cases, it’s important that the

conversational AI system has a route to pass the user onto a channel that can

assist when it can’t.

When selecting a use-case, picking a domain of knowledge where a reasonably

high proportion of the user intentions can be handled by the system is important

for maintaining the overall user experience. This analysis formed a key step in

our methodology of considering the most appropriate use-cases for a chatbot

within council services. A chatbot where most user intentions can’t be handled 12

is likely to be regarded as highly unsatisfactory, even if it can handle a minority

of user intentions very well.

For these reasons, to build a system in a reasonable amount of time and effort,

selecting an appropriate use-case is as equally important as selecting an

appropriate technology.

12 Refer to the Return on Investment analysis for further details of use case considerations within the
context of council chatbots

Technology Landscape Review | April 2019 | Torchbox

25

5. Current common limitations of NLU in
conversational AI systems
All the major cloud players have selected an intent and entity based model for

their systems. While accuracy levels tend to differ somewhat depending on the

volume of training, the domain of knowledge, and the style of use, they are

largely similar in underlying technologies and share similar strengths and

weaknesses.

5.1. Multiple or conditional utterances

Currently these systems tend to find user utterances containing multiple

intentions or conditional intentions difficult to classify.

It should be noted that humans also find these situations difficult to reliably

classify. While there are a number of practical ways good conversational design

can help these systems to deal with these situations, these systems don’t

generally have good out-of-the-box solutions for dealing with this sort of

ambiguity.

5.1.1. Conditional intention utterance example

A conditional utterance is where the overall intention is dependent only on the
other part of the utterance occuring:

“If the doctor doesn’t see me this week, I’m going to report her to the

BMA!”

With typical domain training these systems are likely to be confused between

“Book an appointment” or “Deal with a complaint”.

Good conversational design can provide for standard ways to deal with the

priority of different intentions and disambiguating between two very likely

intentions.

Technology Landscape Review | April 2019 | Torchbox

26

5.1.2. Multiple intention utterance example

A multiple intention utterance is where a user has a number of things they want
to accomplish and lists them all in one utterance.

“I want to book an appointment for my blood test, then find out when you

close today because I need to collect my prescription, oh and I need

another appointment for a scan next week?”

In this example, with typical training conversational AI systems are likely to be

confused between intentions:

Book an appointment for a blood test or a scan? Is it this week or next?

Give opening hours?

Advise on prescription collection?

Or all of these?

and if so, in which order?

Good conversational design can encourage users to speak in a way which helps

the system. It can also select the best intention with which to start helping the

user, and then make a placeholder to come back to a secondary item from the

list.

5.2. Intentions with complex implicit hierarchies

These systems classify the likelihood of an utterance having one meaning or

another just based on the words and their position. They don’t make underlying

judgements on the relative importance of one classification over another in

making their decision. So, if we train the system on example utterances for

intentions like:

Technology Landscape Review | April 2019 | Torchbox

27

Book an Appointment:

“I need an appointment; now what time is a doctor available?”

(and other similar examples)

and

Emergency Request:

“Help I need a doctor urgently!”

(With other examples containing of “help” or “emergency” frequently)

The system might struggle to classify between the two intentions when a user

says:

“I need a doctor now! No time for an appointment.”

This contains many of the same words and arrangements of words as both

intentions training examples. It also has additional words which cause confusion

between the two examples, and it lacks some of the key words which we have

trained to show the importance of the emergency request intention, like “Help”

or “Emergency”.

In this case, a human understands implicitly that the impact of misclassifying the

utterance as the non-emergency situation is high, and if needing to make a

choice between them will probably treat it as an emergency situation even if the

words are more like the non-emergency example.

Conversational AI systems don’t by default possess the concept of the possible

impacts of the classifications, and so if we wish the system to consider these

factors we must explicitly overlay them in our configuration. For instance, given

the choice above between an emergency or a non-emergency classification, a

Technology Landscape Review | April 2019 | Torchbox

28

system could be trained to always treat close classification decisions as an

emergency until it is clear this isn’t the case.

These implicit hierarchies of intents are often strongly felt within organisations

but weakly articulated. As the number of different user intentions within a

domain grows, the similarity between each intent becomes greater, and this

implicit priority becomes more significant and harder to manage.

In these cases, often humans within the same organisation will start to disagree

over the correct reaction or interpretation of a user utterance which limits the

overall accuracy the model can achieve.

The ability both of humans to agree in interpretation, and of the system’s limited

ability to consider factors other than language, often become limiting factors on

the overall accuracy of the system. This tends to put an upper limit on the

number of intentions it’s practical to try and train within any one domain using

this sort of technology.

Technology Landscape Review | April 2019 | Torchbox

29

5.3. The “long tail” of queries

Despite great improvements in the understanding of language, and the number

of pre-trained entities and user intentions available, the effort in configuring an

intent and entity based AI system for any given domain is high. That effort rises

non-linearly as the number of user intentions that the system is trained to

recognise within a domain increases.

As a rule of thumb, most systems built with these tools support 10-50 user

intentions within a knowledge domain. Domains of knowledge with 50-500

intentions are often built in large production systems with a much greater

amount of effort.

Systems exceeding 500 intentions are built with these technologies, but there

tends to be a practical limit somewhere above this where the cost/benefit

equation becomes unviable. This exact point varies with domain and approach,

but somewhere in the range 600-1200 intentions would typically become

impracticable.

Unfortunately, the total number of possible “intentions” a user could have for a

given interaction with an organisation can typically be much higher than this

practical limit. Some of those intentions will happen thousands or millions of

times a year, and some will happen only once or twice. It is not currently

practical to train a conversational AI system explicitly for those situations which

only happen infrequently. The queries that happen regularly and are key targets

for intent and entity conversational AI systems and are often termed the “short

tail”. The queries which happen infrequently are termed the “long tail” and

require a different sort of technology to serve them.

Long tail targeted systems are not trained with a specific list of actions they can

carry out; instead they are trained on strategies for analysing the user input,

searching a corpus of information for a possible answer, and then presenting a

list of possible documents for the user to read further, alongside a snippet of

evidence that indicates why it’s been shown. If the answer to the user’s problem

Technology Landscape Review | April 2019 | Torchbox

30

is somewhere within the documentation then there is a chance the system will

present it, even if it has never had an example of when to present this data

before. The correct answer might not perhaps be in the first or second position,

but it might be in the list.

Hence the costs for training a long tail system tend to be initially higher, but

scale in a much more sustainable way. Instead of training and integrating each

new possible behaviour, any new answer added to the corpus of information will

become immediately available to be found. Well-worded, infrequent requests

are as likely to be matched as frequent requests if they closely resemble a

document within the corpus

The most familiar interaction most users will have with a long tail problem is a

search like Google. We’re used to trying a search term, scanning 5-10 things we

might want to examine further and if not satisfied altering our search and trying

again.

That feels very different however to talking to a conversational bot that will try

and clarify what we want to do and then help us directly achieve it. So not only is

the underlying system and technology different, the presentation of the

information in the conversation also needs to be different.

One of the major features being actively incorporated or worked on by the

major cloud players is the ability to build hybrid systems, which have short-tail

behaviour to help users complete frequent tasks and provide high certainty

answers, but then have long-tail like behaviour to provide multiple possible

answers generated automatically from supporting documentation to infrequent

tasks.

Technology Landscape Review | April 2019 | Torchbox

31

6. Comparison of the accuracy of short
tail conversational AI systems
From the requirements identified throughout this research project, the most

appropriate type of system to consider would be based on intent and entity

based machine learning. This review was asked to compare eight systems. The

following have been selected, based off their initial appropriateness for

consideration:

● Chatfuel

● Botkit

● LivePerson Maven

● Amazon Lex

● Microsoft LUIS

● Google DialogFlow

● Rasa

● IBM Watson

Chatfuel is the only keyword-based system within this review, and can be

extended by connecting it to Google Dialogflow. Botkit has no inbuilt NLU but

similarly can be connected to any of the major intent and entity based platforms

and defaults to using Microsoft LUIS.

Heriot Watt University conducted a thorough study (Liu et al 2019) of four of

the major conversational AI platforms from this list from IBM Watson, Rasa,
13

Microsoft Luis, and Google DialogFlow. The study used a crowd sourced set of

more than 64 intents and 11,000 utterances across a variety of common virtual

13 Xingkun Liu, Arash Eshghi, Pawel Swietojanski and Verena Rieser. "Benchmarking Natural Language
Understanding Services for building Conversational Agents." Tenth International Workshop on Spoken
Dialogue Systems Technology (IWSDS) 2019.

Technology Landscape Review | April 2019 | Torchbox

32

agent scenarios, such as instructing a machine to make a calendar reminder, or

play a piece of music, as a way of training and testing each system.

IBM Watson was found to have leading intent recognition scores for both

precision, recall and combined F1 score (explained below).

6.1. Intent classification scores

This test examines how well the systems differentiate between different user

intentions within a domain.

System Precision Recall Combined F1
Score

IBM Watson 0.884 0.881 0.882

Google DialogFlow 0.870 0.859 0.864

Rasa 0.863 0.863 0.863

Microsoft LUIS 0.855 0.855 0.855

Precision measures the proportion of intentions that are correctly classified. A

high precision number means that the system returned few incorrect

classifications for the number of correct classifications it returned.

Recall measures how many correct intentions are classified compared to the

total number of intentions that could have been classified. A high recall number

means that the system correctly classified most of the intentions.

The combined F1 score combines these two numbers into an overall figure
14

For all the measures, higher is better, up to a maximum of 1.

Between these major platforms it can be seen that the scores for intention

classification vary by about only about 3-4% from the best to the worst

performer.

14 F1 score is the harmonic mean of precision and recall

Technology Landscape Review | April 2019 | Torchbox

33

A separate test in the study looked at named entity recognition using contextual

training on the same systems using the same 11,000 utterance training set

annotated for 54 types of entities. IBM Watson was not included in the

contextual training tests, but run in synonym only mode which does not produce

comparable results.

6.2. Named entity recognition scores – 1 x 54 entity set

Using the same data set as the intention test, this test examines how well the

systems can extract the name entities relevant to that intention from what the

user has said.

System Precision Recall Combined F1
Score

Microsoft LUIS 0.837 0.725 0.777

Rasa 0.859 0.684 0.768

Google DialogFlow 0.782 0.709 0.743

To provide a result for the IBM Watson contextual recognition training, the

original corpus of 11,000 annotated user utterances was re-used to split the 54

entity set into a series of tests for each of the scenarios, with a maximum of 20

entity types in each scenario. This was rerun for Google DialogFlow and IBM 15

Watson to give a two system comparison on this somewhat simplified dataset.

6.3. Named entity recognition scores – average across
8 sets of up to 20 entities

System Precision Recall Combined F1
Score

IBM Watson 0.8773 0.9117 0.8935

Google DialogFlow 0.7203 0.8921 0.7943

15 20 entity types is the maximum number supported by IBM Watson on the standard plan. Higher limits
are available on the Plus and Premium plans.

Technology Landscape Review | April 2019 | Torchbox

34

From these early results IBM Watson seems to be a very good performer for

Named Entity Recognition, and we look forward to the publication of the

revised test set across all four systems.

Technology Landscape Review | April 2019 | Torchbox

35

7. The value of the data model for a
business domain
These modern intent and entity based systems under examination are trained in

similar ways, with a set of classified user utterances annotated for significant

entities. For any given business domain, these utterances need to be matched to

a set of actions and information that is useful for the user. Creating this initial

model, then testing and evolving it with real users in a live situation, requires

intensive effort. However, when created and optimised, it can be relatively

easily used to train any of the major systems.

The methods for testing the accuracy of these models are well established. A

created model for a user domain can be stored as a training set and a test set,

alongside measure precision and recall scores, as seen in the accuracy tests in

the previous section. This can be stored as an open source asset in its own right

and provides a useful standard for any organisation tackling this domain of

knowledge, regardless of the technology chosen for implementation.

Selecting the right use cases, and creating a quality model that serves that use

case, will allow organisations to select their preferred technology and channel

Technology Landscape Review | April 2019 | Torchbox

36

8. Other important aspects to consider
in a conversational AI platform

8.1. API and UIs

Ideally a conversational AI platform should have strong User Interface (UI) tools

to help train and update the system, and have full Application Programming

Interfaces (APIs) support to allow development to be automated as part of a

DevOps pipeline.

Some systems, such as Chatfuel, have a heavy focus on configuration via the UI,

and provide little in the way of API support. This makes them very quick and

easy for non-technical users to create flows but are ultimately limited in being

able to programmatically create and maintain a wide variety of bot functions.

Other systems like Rasa NLU/Core have a heavy focus on configuration by file

and via API. This makes them less approachable for non-technical users to assist

in training and iterating the bot.

The best systems support all features through both the UI and the APIs.

8.2. Context Object

As well as intent and entities, a context object allows the system to keep track of

objects discussed within the conversation, other information about the users

situation, and where the conversation is up to. The design of this context object

is crucial to building a conversation which feels natural and allows the user to

refer to items earlier in the conversation, and to switch the subject during the

conversation. Any conversational AI platform needs to support a flexible

context object which is tracked and logged throughout the conversation and

preferably can support complex object types.

Technology Landscape Review | April 2019 | Torchbox

37

8.3. Visual Conversation Flow Configuration

As well as understanding the user’s intention, and having a response to aim for,

it’s important to be able to trace how the flow of the conversation will progress

to that goal.

Some tools provide ways to configure visually the conversation flow. This can be

very useful to help quickly design and understand conversational flows and

involve less technical members in their design.

Other platforms rely only on configuration file or code-based creation of rule or

story based flows

8.4. Conversation flow control

There are two major methods for controlling the flow of a conversation:

8.4.1. Rule based flow configuration

By considering the position in the conversation flow, the state of the context

object, and the user’s last utterance in terms of intents and extracted entities, a

set of rules should define how the bot responds. These rules can be configured

in a rule engine, or in code, and may have a visual tool to help design them

The advantages of this method are that it is straightforward to create

predictable functionality quickly, and it works well with agile development

methods to incrementally build new features with associated tests. In complex

systems, these rule sets can become large and difficult to manage. In scenarios

where there is little existing data showing how users interact with this sort of

conversation, this is normally the most practical way to quickly create a system

that users can then start to react to, and to update the model over time. Initial

systems tend to have coarse sets of rules and need to be iterated after user

reactions; rule sets quickly need to grow to create natural behaviour. If a large

volume of data is available describing how users already talk in this business

situation, creating the bot rule set from can be effort intensive and lead to a

complex initial rule set.

Technology Landscape Review | April 2019 | Torchbox

38

All the platforms aside from Rasa fall into this category, though they differ in

their exact implementations of these sort of rules systems

8.4.2. Machine Learnt Story Based

Instead of explicitly configuring rules which determine the flow at each

conversational turn, “stories” are used to give example conversations (both

good and bad), and a probabilistic model is machine learnt to control the flow of

the conversation. This can create elaborate functionality from large volumes of

existing data, and is designed to more maintainable in the long run. However,

the volume of stories required for training can quickly become large, and

creating fine grained control of certain behaviour or investigating odd

behaviour can be more difficult. Some configuration like slot filling (ensuring

that all the entities for an intent are present, and prompting the user for any that

are missing) may need many example stories to create something that would be

much more quickly done with a reusable rule policy. To combat this, systems

may use a hybrid approach of configured rules for forms or slot filling, combined

with a machine learnt story approach.

Rasa is the only platform in the review which currently uses probabilistic

machine learnt stories.

8.4.3. In the near future

Most of the major platforms are designing new ways in which the weight of

configuration of rules or stories necessary to configure common conversational

structures can be reduced. The next iterations of cloud platforms are likely to

automatically iterate and learn details such as the best order or possibly

phrasing to ask multiple required questions for a desired goal.

8.5. Pre-built channel integrations

Having a conversational platform that supports your target channel

out-of-the-box can substantially speeds-up delivery of a solution. Pre-built

integrations also tend to help ensure that the internal message model within the

Technology Landscape Review | April 2019 | Torchbox

39

conversational platform matches easily the message model of the external

systems.

Other pre-built integrations that may be useful are long tail solutions, Robotic

Process Automation (RPA) solutions (which automate manual human tasks on

legacy backend systems), Customer Relationship Management (CRM) solutions

(that may contain useful information about a customer and their prior

interactions), or ticket-tracking systems (which may allow a bot to start manual

processes involving both human and automated systems or get updates on

issues already in flight).

8.6. Supported content types

Whilst the focus of a conversational AI platform is understanding pure text,

human usage of messaging systems tends to involve a wide variety of other

content, such as buttons, options, videos, emojis, gifs, URLs and images. Having a

conversational platform which supports the configuration of these into its

internal model can substantially improve the user experience and avoid the

need to design complex objects externally. It also helps ensure consistent

behaviour across multiple channels that the platform supports

If possible, conversational AI systems should also understand these inputs via

the inbound channel. Typically, this is limited only to emojis, buttons and

options. But visual image recognition can be integrated in most of the major

cloud platforms in order to understand images which can be very useful in

certain scenarios - for instance, to read a number plate or verify a document. In

the future, automatic processing of images into usable data for the conversation

may become an important differentiating feature.

8.7. Easy configuration of external web services and/or
cloud functions

Bot responses can be enhanced by integrating information from the user with

information from internal or external web services.

Technology Landscape Review | April 2019 | Torchbox

40

Common external APIs such as Maps, Weather, News or Public transport can

greatly enhance a bot’s ability to understand the general situation and respond

in a tailored way to the user. Internal organisation APIs may allow the bot to

understand a customer’s status, orders or account balance, and conduct a wide

variety of actions on behalf of the user

Ways to easily configure the call of a web service from within the conversation

configuration are very useful features within these platforms.

This data may be returned from the web service in complex formats that need

sophisticated manipulation, or a response may need to be constructed across

information from a variety of APIs. Alternatively, the user may say something

that is in a complex format, for instance a list of items with possible duplications.

As well as the ability to call an external webservice, it is also very useful to have

the option to break out of the conversational configuration language and do a

small amount of traditional programmatic processing of data to transform the

information in context to support the next response. The ability to call by simple

configuration a serverless cloud function to perform this in your language of

choice is similarly very helpful to building bot conversations.

8.8. Pre-Trained System Entities

Whilst a project could train any entity type from scratch, there are some entity

types which are re-used across many scenarios, such as dates, people, numbers,

currencies or places. Users may also say these items in a wide variety of complex

ways such as,

“Can I see May a week next Tuesday?” (@person: Dr May, @date:

2019-04-16)

“Up my order to 10k this week Dave” (@number: 10,000, person: Dave)

In which case the entity requires enrichment and processing to format the data

into the most useful way for a bot response.

Technology Landscape Review | April 2019 | Torchbox

41

The best systems have a variety of sophisticated pre-trained entity types which

deal with complex variations and have been well optimised to spot different sort

of examples within user utterances without further custom training.

8.9. Pre-Trained user Intentions

Similarly, a user could train any intents from scratch, but as user interactions

with bots become more common, there is an establishing variety of

functionalities that users expect from bots. The best platforms provide a

catalogue of pre-trained or “built in” content which the organisation can use to

accelerate the training of its own scenarios, or use via configuration along-side

their own training.

8.10. Cluster and recommend user intentions based on
existing chat logs

Another feature that can speed development of a solution is the ability to ingest

large volumes of existing chat data, and cluster the user utterances into

suggestions for user intentions ready for training. Google via Chatbase provides

this functionality and IBM’s Watson Assistant provides this natively.

Technology Landscape Review | April 2019 | Torchbox

42

8.11. Analytics Dashboard

To aid in continuously improving the system once initially launched, the

conversational tools should provide a dashboard of the user conversations.

Typical functions include number of conversations and number of user

utterances per conversation. Better systems will give statistics on responses

that have weak or strong training, or good bad user reactions, or give

visualisations of the distribution of routes through the system that users are

following.

8.12. Advanced Analytics

Continuous improvement of a complex system when live often involves much

more complex reporting and analysis than an analytics dashboard provides. The

best systems provide their logs in an accessible way that can be provided to a

more advanced analytical platform. This would let users create and track their

own metrics for different conversational flows success rates, produce industry

standard measurements such as precision and recall, and produce advanced

visualisations of things such as conversational flows and confusion matrices

(large matrices which show which intentions are most often confused with each

other).

Technology Landscape Review | April 2019 | Torchbox

43

9. Content Management
All of these systems require configuring responses for the user. These will be

templated responses in the system’s internal format, with variables to be filled

from the conversation, which will then be rendered by the appropriate channel.

While the internal format may differ from system to system, all share the fact

that they don’t explicitly call this a content management function, and typically

it is a weakly supported ancillary function to the core training of the system.

If a system is to be used across multiple languages, or across multiple

organisations based on a shared investment in training, it’s strongly

recommended to replace the internal content management processes in the

chosen conversational AI system with an external content management system.

Having an external content management system allows the chatbot’s responses

to the user to be presented in the best format for the user’s language,

organisation and device format, and to be consistent across many different

channels.

Modern “headless” content management systems (a CMS where the content

models and content are updated by APIs as well as via the UI) can be quickly

adapted to work with chatbot utterance,s and can help ensure that the answer

provided across channels is consistent.

Full text search of chatbot responses, version control, editorial control and

duplication or similarity identification, are all desirable functions when

considering an external CMS.

Technology Landscape Review | April 2019 | Torchbox

44

10. Costs
Most providers offer a free tier suitable for experimentation or personal use,

but these in general would not be suitable for a production solution.

Listed below are the costs as publicly published for the paid-for plans suitable

for enterprise use in a shared public cloud environment.

Most of these providers also offer enhanced versions of the service with

enterprise-focused features, such as with segregated or private cloud

installations, multiple high availability regions, and support for large numbers of

environments.

These providers will have enterprise facing sales organisations and negotiate on

price based on requirements and volume. Depending on the organisation’s other

cloud requirements, there may be advantages for negotiating for NLU services

alongside a wider cloud package.

The costs for paying for the cloud hosting and cloud NLU solutions are generally

small compared to the costs in services and maintenance to create a domain

specific bot that they then have to continuously maintain, and supervise the

machine learning in production.

Cloud based providers charge in a variety of ways, detailed below:

● per API call

● per conversation or per daily active user

● per active monthly user

10.1. Charge types

10.1.1. Per API call

A charge is made for the response to each user utterance.

Technology Landscape Review | April 2019 | Torchbox

45

10.1.2 Per Conversation or per daily active user

A charge is made for a single conversation, regardless of the number of

utterances within it. Each system will define how a conversation is started and

ended; some consider it to be any contact within a day, so a single charge is

made for a user establishing a conversation on a day regardless of how many

user utterances are analysed within that day.

10.1.3 Per active monthly user

A charge is made for each user who contacts the organisation any time within

the month. The charge covers any number of conversations containing any

number of analysed utterances for that user. Typically, these subscriptions

operate in tiers, for instance up to X,000 monthly active users.

This can make it difficult to compare prices across providers, and different

billing schemes may be more or less advantageous for organisations with

different contact profiles or conversation lengths.

10.2 Comparing charge types

To aid comparison, the following “rules of thumb” are useful:

A typical bot conversation contains 8-10 user utterances.

A typical user contacts the organisation one or two times a year, or

alternatively, the monthly contact volume is approximately 10% of the total

user volume.

So, for a system with 100,000 users, 10,000 monthly subscriber contacts could

be expected, which would generate around 100,000 API calls/month.

For an organisation purchasing and hosting a professional bot system, together

with associated cloud hosting for monitoring, analytics or integrations,

supporting multiple environments in shared public cloud, with an agreed

Technology Landscape Review | April 2019 | Torchbox

46

support contract and SLAs for a single use case, should cost in the region of

£2-10k a year.

For a larger organisation with requirements to create and maintain a wide

variety of internal and external bots, with much higher usage requirements,

more enterprise-like requirements, for instance requiring greater levels of data

isolation or multi region high availability, budgeting should start from around

£100k a year.

Organisations requiring fully private solutions, having very specific data

requirements, or having very high usage and performance requirements, should

budget from £250k to multi-million a year.

10.3 Costs by platform

10.3.1. Chatfuel

Chatfuel defines reachable users and subscribers in a different way than is

typical with other conversational AI systems, as it focuses on managing a total

reachable audience, not the monthly active number of users: reachable users

who have not contacted the organisation this month, but whom the organisation

could still reach out and contact, would still be charged as a subscriber to the

channel.

Chatfuel is billed by the total number of subscribers to the channel. For 10,000

subscribers with the Premium support package the charges are $385/month ,
16

or approximately $5,000/year.

10.3.2. Botkit

Botkit is an open source platform built on node.js for building bots connecting

other NLP to other Channels. As such, it doesn’t have a charge for usage, it just

needs cloud infrastructure to be purchased to host the app.

16 https://chatfuel.com/pricing.html

Technology Landscape Review | April 2019 | Torchbox

47

https://chatfuel.com/pricing.html

10.3.3 Amazon Lex

Amazon Lex is charged by blocks of 1,000 API calls at $0.75 per thousand.
17

Amazon Lex suggests use of Amazon Lambda for making additional processing

based on Lex enrichment, which requires separate charges but Amazon Lambda

has a generous free tier.

10.3.4. LivePerson Maven

LivePerson typically charges by monthly active users. LivePerson is a full

messaging management platform, providing the human user management

functions suitable for organisations with large contact centres, together with

the NLU functions for bots using external providers or LivePerson maven, and

the channel integrations.

The per active monthly user charges are therefore generally substantially more

expensive than an NLU platform which provides only the bot functionality.

LivePerson does not publicly publish pricing information.
18

10.3.5. Rasa

Rasa is provided as: either an open source Rasa stack, including the NLU engine;

Rasa core, providing the basics for creating and managing conversations; and

Rasa platform which provides enterprise level functionality for building and

managing bots with full support.

Rasa Stack does not incur a charge, and Rasa does not publicly publish pricing

for the Rasa platform .
19

17 https://aws.amazon.com/lex/pricing/
18 https://www.liveperson.com/pricing/
19 https://rasa.com/products/pricing/

Technology Landscape Review | April 2019 | Torchbox

48

https://aws.amazon.com/lex/pricing/
https://www.liveperson.com/pricing/
https://rasa.com/products/pricing/

10.3.6. Microsoft Luis

Microsoft is charged by blocks of 1,000 API calls at £1.118 per thousand.
20

Microsoft provides the ability to run LUIS within a private container which is

paid for separately. Long tail like functionality is provided through the Microsoft

QnA maker which is charged for separately and requires three Microsoft Azure

instances and a £7.50 payment/month for the management portal and APIs.
21

10.3.7. Google Dialogflow

Google Dialogflow Enterprise Essentials is charged at $2 / 1000 API calls with

short tail functionality only, or $4 / 1000 for the Enterprise Plus edition which

also executes the knowledge connector long tail functionality search for each

API execution.
22

10.3.8. IBM Watson

IBM Watson Assistant standard plan is charged per individual API call at

£0.00167 per API call, so 1,000 API calls would be £1.67 on the Standard Plan
23

with short tail only functionality. IBM provide a Plus plan including long tail

functionality and multi environment support for small and medium enterprise

above this which is billed by monthly active users, as well as a Premium plan

above this for large enterprises that is also billed in the same way.

IBM does not publicly publish Plus and Premium plan pricing.

20
https://azure.microsoft.com/en-gb/pricing/details/cognitive-services/language-understanding-intellige
nt-services/
21 https://azure.microsoft.com/en-gb/pricing/details/cognitive-services/qna-maker/
22 https://cloud.google.com/dialogflow-enterprise/pricing
23 https://www.ibm.com/cloud/watson-assistant/pricing/

Technology Landscape Review | April 2019 | Torchbox

49

https://azure.microsoft.com/en-gb/pricing/details/cognitive-services/language-understanding-intelligent-services/
https://azure.microsoft.com/en-gb/pricing/details/cognitive-services/language-understanding-intelligent-services/
https://azure.microsoft.com/en-gb/pricing/details/cognitive-services/qna-maker/
https://cloud.google.com/dialogflow-enterprise/pricing
https://www.ibm.com/cloud/watson-assistant/pricing/

11. Feature matrix

Area Feature Chatfuel Botkit
LivePerson

Maven Amazon Lex
Microsoft LUIS

(with QnA)
Rasa Stack
(OOS only)

Google
DialogFlow
(Enterprise

Plus)

IBM Watson
(Plus)

NLU Intent Recognition Keyword NA ML Example Based ML Example Based ML Example Based ML Example Based ML Example Based ML Example Based

Entity extraction Keyword NA Synonym
Automated Expanded
Synonym

Contextual NER and
Synonym

Contextual NER and
Synonym

Contextual NER,
Synonyms,
Automated
Expansion

Contextual NER,
Pattern, or Synonym

API support
Basic Dashboard and
Bot Status NA Partial All UI functions All UI functions All UI functions All UI functions All UI functions

Long Tail Integration No No
Yes - Knowledge Base
Search No Yes - MS QnA No

Yes - Knowledge
Search

Yes - Watson
Discovery

Conversation
Flow Visual Flow Tool Yes No Yes No No No No Yes

Flow configuration
method

Botkit Studio - Script
authoring tool

Visually Configured
Rules

Code level rule
configuration

Code level rule config
via Dialogs SDK

Machine Learnt
Stories

Configured SubIntent
Rules

Visually Configured
Rules

Context object
supporting complex
objects Yes

Conversational
Threading No Yes Yes Yes Yes Yes

Build
acceleration Pre-trained Entities No No Yes Yes Yes Yes Yes Yes

Pre-trained/Built-in
user intentions No No

Pre-built bots for
common LP scenarios Yes Yes No Yes Yes

Cluster existing data
to suggest intents No No No No Yes No Via Chatbase Yes

Integration

Out of the box
supported channels Facebook

Web, Apps, Facebook
Messenger, Slack,
Twilio, Cisco Spark,
Microsoft Teams

IVR, Apple Business
Chat, SMS, Web,
Mobile Apps,
Facebook, Google
RCS, WhatsApp

Facebook, Slack, Kik,
Twilio

Cortana, Direct Line,
Email, Facebook,
GroupMe, Kik, LINE,
Microsoft Teams,
Skype, Slack,
Telegram

Facebook, Cisco
Webex Teams, Slack,
Mattermost,
Telegram, Twilio,
RocketChat, MS Bot
Framework,
SocketIO, REST
channels

Google Assistant,
Facebook Messenger,
Slack, Dialogflow
Web Demo, Kik, Line,
Skype, Cisco Spark,
Telegram, Cisco
Tropo, Twilio, Twilio
Programable Chat,
Twitter, Viber Facebook, Web, Slack

Support webservice
and/or cloud function
calls No No

Hosted java script
functions

Yes - AWS Lambda
Cloud Functions Yes No Yes

Yes - IBM Cloud
Functions and
Webhooks

Out of the box
response types

Text, Image, Audio,
Video, RSS, Google
Sheets NA

Text, Image, Audio
File, Video, List
Picker, Quick Reply

Text, Images, Option
Cards

Text, Images, Video,
Audio, Files, Buttons Text, Images

Text, Image, Card,
Quick Replies

Options, Images,
Text, Pause

Analytics Analytics Dashboard
in Tool Yes No Yes Yes Yes No Yes Yes

Advanced Analytics NA
Via Middleware
Plugins No No No No Via Chatbase Via Watson Studio

Technology Landscape Review | April 2019 | Torchbox

12. High-level characterisation of each
platform

12.1. Chatfuel

Chatfuel is a popular Facebook messenger based automated response system. It

has a focus on outbound messaging and marketing. It uses keyword based NLU

but can be extended by connecting it to Google Dialogflow. It is focused on the

Facebook channel and is a simple and quick tool for business users to create

large scale automated outbound messaging bots and simple inbound message

responses. It is cost effective and well-targeted at maximising the messenger

features that Facebook provides.

12.2. Botkit

Botkit is a connectivity platform for connecting a wide variety of different

channels to a large number of natural language engines. It formalises a message

pipeline for transforming inputs from a wide variety of channels to a normalised

message format, then passing it to a variety of NLU systems for evaluation and

then handles executing the response back to the specified channel. As such, it

doesn’t have any inbuilt NLU, but can use any of the major platforms. It

currently defaults to use LUIS NLU and the Howdy team that built Botkit have

recently joined Microsoft. It is currently provided and maintained as an open

source framework.

12.3. LivePerson Maven

LivePerson released LivePerson Maven their propriety Bot Tooling and NLU

engine in December 2018. Prior to that, LivePerson had a partnership IBM

Watson for NLU understanding and bot tooling, and still supports connecting to

IBM Watson, Google Dialog flow, or other custom bot connectors. At this time

there are no publications of the technology underlying the NLU, nor any

available independent benchmarks for its accuracy. However, from examination

of the documentation and behaviour of the tooling, it appears to be based on a

Technology Landscape Review | April 2019 | Torchbox

51

similar intent-and entity based training method as with the IBM Watson or

Google Dialog Flow connectors provided.

LivePerson is a messaging focused platform and integrates with some of the

latest messaging standards such as Apple Business Chat, Google RCS, Facebook

Messenger and WhatsApp. It has strong history of managing large scale human

webchat and messenger call centres. It would not be typical to try and use

LivePerson Maven without utilising the rest of the LivePerson suite. In that

respect it has a much larger system footprint than the other conversational AI

platforms in the review providing extensive human messaging management, IVR

integration, Provided UIs, channel integrations, as well as NLU and Bot

functionality.

In an environment with an extensive existing LivePerson webchat, or messaging

deployment, LivePerson Maven represents a straightforward next step into

starting to automate tasks with conversational AI.

12.4. Amazon Lex

Amazon Lex is the text version of the Amazon Alexa system. It provides an easy

to configure UI for building command and control style bots with easy automatic

slot filling. More sophisticated configurations rely on its tight integration with

Amazon Lambda functions, and onward into other AWS services such as Elastic

Search. Amazon Lex is very cost effective and suits well organisations with a

large existing footprint of AWS developments already.

12.5. Microsoft Luis

Microsoft LUIS has a heavy developer focus, providing coded configuration of

conversational flows. It supports a wide variety of channels and content types,

and the base NLU is supported with a strong set of developer SDKs in the

Microsoft Bot Framework. It has a strong viewpoint for bot development and

provides long tail document ingestion and integration via the Microsoft QnA

services.

Technology Landscape Review | April 2019 | Torchbox

52

12.6. Google Dialogflow

Google Dialogflow is the natural language engine which allows users to build

apps or actions for google assistant on Android phones or via google smart

speakers. It is also available to be used to build chat or messaging systems using

text only. It has an easy to use training UI for intents and entities, but uses a

series of context based sub intents to configure conversational flows. It

supports long tail functionality by linking knowledge connector search like

behaviour into Dialog Flow systems. It supports more advanced analytic

functions including rich flow visualisations and recommendation of user

intentions from existing logs via the Chatbase virtual agent modeller.

12.7. Rasa

Rasa was launched in December 2016. It is included as it provides similar

functionality to the major proprietary cloud platforms but is available in an open

source format which can be run locally without an internet connection. It is

configured primarily by configuration files and has a data science focus and feel

to it. It provides the greatest ability to customise the underpinning natural

language processing for a bot created with it. It is the only system in this review

to use Machine Learnt Stories to configure conversational flow.

However, these features mean that it requires the most work to setup, host and

scale, and is probably the least accessible to less technical users.

Rasa have launched a paid version of the Rasa platform which provides more

advanced hosting, DevOps and Tooling around the core open source product.

12.8. IBM Watson

IBM Watson is designed for a “no-code” persona and is one of the most

non-technical-user friendly platforms whilst having some of the most powerful

underlying features including intent suggestion from chat logs and built in long

tail integration It scored top in the accuracy benchmarks for this report. IBM has

some of the longest experience in this field and provides pre-built content

Technology Landscape Review | April 2019 | Torchbox

53

focused on enterprise rather than consumer use cases. It tends to be at the

higher end of the price bracket. IBM provides long tail integration via Watson

Discovery and advanced analytics via Watson Studio including pre-built

analytics workbooks for accuracy measurement and confusion matric

generation.

Technology Landscape Review | April 2019 | Torchbox

54

13. Recommendation
Based on this review, this document would recommend these systems in this

order. Specifically, any of the first four (IBM, Rasa, Google or Microsoft) are the

strongest competing choices capable of building very powerful systems for

councils wishing to implement a chatbot solution:

1. IBM Watson

2. Rasa

3. Google Dialog Flow

4. Microsoft Luis

5. Amazon Lex

6. LivePerson Maven

7. Botkit

8. Chatfuel

A lot of the organisational fit for a platform depends on the style of user

targeted. If the project will be very data science led, Rasa might be the primary

choice. If developer led, LUIS might be best. Or, if supporting both business and

technical users was a priority, IBM might be the best choice.

Similarly, the order might be altered for an organisation already with substantial

deployments on one of the cloud platforms already, making an IBM, Google,

Microsoft, LivePerson or Amazon solution a natural fit.

The only system which can be deployed without internet connectivity and can

form part of a fully open source deployment would be Rasa. It should be noted

though that using any of the systems, the data model and responses can be fully

open sourced.

Technology Landscape Review | April 2019 | Torchbox

55

